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A moment closure model of sexually transmitted disease spread through a concurrent partnership
network is developed. The model employs pair approximations of higher-order correlations to derive
equations of motion in terms of numbers of pairs and singletons. The model is derived from an underlying
stochastic process of partnership network formation and disease transmission. The model is analysed
numerically, and the ¢nal size and time evolution are considered for various levels of concurrency, as
measured by the concurrency index µ3 of Kretzschmar and Morris. Additionally, a new way of calcu-
lating R0 for spatial network models is developed. It is found that concurrency signi¢cantly increases R0

and the ¢nal size of a sexually transmitted disease, with some interesting exceptions.
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1. INTRODUCTION

There has recently been great interest in the role played
by the pattern of sexual contacts in the spread of sexually
transmitted diseases (STDs) (see Garnett 1997; Morris &
Kretzschmar 1997; Watts & May 1992; Dietz & Tudor
1992). In particular, much attention has been paid to
heterogeneity in the contact structure, for instance the
e¡ect of the distribution of partnerships in the population.
The central questions to answer concern the e¡ect of the
contact structure on R0, growth and endemicity. In this
paper we use moment closure techniques to construct
analytical approaches to the calculation of these quanti-
ties.

The natural history of STDs mixes two dynamical
processes. First, there are the partnership dynamics in
which partnerships are formed and broken. This can be
regarded as producing a dynamical network in which the
nodes represent individuals and where edges connect indi-
viduals in a partnership. On top of this we have an infec-
tion process which is constrained by the network in that
only an individual’s partners can be infected. It is the
combination of these two dynamical processes that makes
the mathematical analysis of such systems more di¤cult
than for disease models that assume homogeneous mixing
(Anderson & May 1991) or a ¢xed network (Rand 1999).

A central role is played by R0 which is de¢ned as the
expected number of secondary infections produced by an
infected individual during his period of infectivity
(Anderson & May 1991). Although this is easily calcu-
lated for mean-¢eld systems, systems in space or on
networks require a more sophisticated approach. One
reason is that the spread of the disease is slowed down by
the screening e¡ect due to the build-up of spatial correla-
tions between infecteds. Additionally, for such spatial
systems there is no longer a simple relationship between
R0 and endemicity. For STDs on dynamic partnership
networks, an expression for R0 has only been calculated

in the case where each individual has at most one partner
and where there is no recovery (Kretzschmar et al. 1994).
In more complex networks (for instance where concur-
rent partnerships are present) the strength of this
screening e¡ect will depend upon the structure of the
network and the rate at which it is changing. The analysis
of this case is more formidable. Nevertheless, one of the
main results of this paper is a calculation of R0 for such
systems.

An important aspect of the network structure is the
distribution of concurrent partnerships where one of the
partners has more than one partner simultaneously. Intui-
tively, one might expect concurrency to increase the
severity of a disease because, under serial monogamy, an
infectious agent must wait for the current partnership to
end before spreading the infection to a new partner
(Ghani 1997). This is not surprising if higher concurrency
is associated with a general increase in the average
number Q of partners per person. It is less clear how
concurrency changes the spread if it is increased without
increasing Q . To model concurrent partnerships Dietz &
Tudor (1992) created deterministic models by extending
conventional pair models to allow for the case where
someone who is paired gains a further single partner, thus
creating triples (`triangles’ in their terminology). They
conclude that the introduction of concurrency in this
limited way does not have a large e¡ect on the epidemic
for the parameters they chose. Watts & May (1992) have
constructed a deterministic model with random mixing to
understand the e¡ect of concurrency on human immuno-
de¢ciency virus (HIV) transmission. In random mixing,
the number of partners an individual currently has does
not in£uence the probability of gaining further partners.
They ¢nd that concurrency can bring about complex
dynamic patterns for HIV, including the existence of two
time-scales for the spread of the epidemic through a
susceptible population: the fast time-scale corresponds to
the spread of infection through the existing set of partner-
ships and the slower time-scale corresponds to spread due
to the formation of new partnerships with susceptibles.
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Finally, stochastic studies of concurrency have been
published by Morris & Kretzschmar (1997), who have
also suggested a concurrency measure µ3 (Kretzschmar
& Morris 1996). The question they speci¢cally ask is:
How do di¡erent ways of distributing a given number of
partnerships in£uence disease spread? When the question
is put in this way it is less clear a priori whether concur-
rency will have a large e¡ect, and what kind of e¡ect that
will be. They ¢nd concurrency increases the growth rate
of the epidemic, and conclude that this is due to the
growth in the average size of the largest connected
components as the concurrency is increased.

One strength of the model of Kretzschmar and Morris
is that it allows for a range of concurrent behaviour
between the extremes of serial monogamy and random
mixing. We consider a system similar to that of
Kretzschmar and Morris, but develop an analytical
approach to it. We use moment closure and pair approxi-
mation to construct our equations. This is now a well-
developed technique for certain sorts of spatial ecologies
(see Rand (1999) for a survey and the mathematical
rationale). In STDs the transmission depends on a
smaller number of contacts and is largely pairwise. Thus
one believes that low-order correlations will be particu-
larly signi¢cant and probably dominate in any moment
closure. To the authors’ knowledge, no previous analytical
models incorporate the range of concurrent patterns
which ours does, and this makes it a useful tool for
studying e¡ects such as concurrency.

The derivation of the model is presented in Appendix
A. There we derive the equilibrium structure of the part-
nership network, the proportion ºk of individuals with k
partners, the basic di¡erential equations and their
moment closure. The variables and parameters are also
introduced in tables A1 and A2.

The derivation of the basic di¡erential equation begins
by considering a stochastic process on a network where
nodes represent individuals and edges represent sexual
partnerships through which a disease may spread. The
creation and removal of edges corresponds to formation
and dissolution of partnerships. Individuals may recover
from infection and rejoin the susceptible class. Although
it is possible to treat more complex situations, in this
paper we restrict ourselves to the case where there is no
incubation time, no mortality and only one gender, and
where space is not represented explicitly. Thus the loca-
tion of nodes and the lengths of edges do not matter. The
partnership dynamics are determined by the rate »=N at
which any two singles form a partnership (where N is the
population size) the rate »³=N at which any two indivi-
duals, at least one of whom is in a partnership, enter into
a partnership (04 ³4 1, ³ controls concurrency) and the
rate ¼ of partnership break-up. An infection is trans-
mitted between an infected person and a susceptible
person at rate l, and infected persons recover at rate ¸
(see Appendix A for details).

2. MOMENT CLOSURE

Moment closure involves, ¢rst, the derivation of di¡er-
ential equations for certain low-order correlations and,
second, a closure scheme for truncating these equations.
The latter scheme usually involves replacing higher-order

correlations by functions of the lower-order ones and may
involve modelling combinations of high-order correlations
as noise. The equations of motion (A5)^(A10) for singleton
and pair quantities involve the third-order quantities
Q (I jSI) and Q (I jSS) which we must approximate in
terms of singletons and pairs to close the system of equa-
tions. The ¢rst of these quantities Q (I jSI) is the mean
number Q xy(I) of infected partners of a susceptible x,
given that the susceptible already has at least one infected
partner y. Similarly Q (I jSS) is the mean number of
infected partners of a susceptible, given that the suscep-
tible has at least one susceptible partner. The fact that one
has only to approximate Q (I jSI) and Q (I jSS) to close
the system is general for epidemiological systems and
means that the analytical treatment of such systems is not
as di¤cult as is usually believed.

We will be interested in calculating the value of quanti-
ties such as Q (I jSS) in the context of invasion of the
disease into a purely susceptible population. In this case,
instead of calculating a global value for Q (I jSS), we
should restrict attention to those SS pairs that are part of
the invading population (i.e. one of the susceptibles is
partnered with an infective). This will be seen to produce
a more accurate moment closure. We denote the appro-
priate value of Q (I jSS) by Q (I jSS)c. For Q (I jSI) we
obviously do not need to distinguish the invasion quantity
from the global one because the susceptible must be part-
nered with at least one infective.

There are a number of ways to derive an approxima-
tion for Q (I jSI). The two conventional approaches where
one assumes that the quantities Q x y(I) are Poisson or
multinomially distributed are untenable for the network
dynamics we have de¢ned. A multinomial distribution
does not work well for networks which are not regular
lattices, and a Poisson distribution does not work well
unless the partnership distribution is random. Thus we
develop a di¡erent, rather heuristic approach which
combines simplicity, intuitive accessibility and accuracy
for both equilibrium solutions and transients.

Before proceeding, there are two things about this
moment closure which should be noted. First, it assumes
that the number of partnerships of a susceptible is not
correlated with their disease statuses, and that knowledge
of the disease status of one partner of the susceptible does
not change the expected disease status of any of the other
partners (equation (2)). Second, triangles are not likely in
this partnership network, unless the population size N is
small. These assumptions are clearly unrealistic; in real
networks we ¢nd core groups, high-activity assortative
mixing, triangles, etc., but our assumptions are a useful
simpli¢cation at this preliminary level of analysis on the
very particular question of the e¡ect of concurrency.

In this derivation, ‰ij Š and ‰ijk Š respectively denote the
number of pairs in state ij and the number of triples in
state ijk and ‰¢Šc denotes the corresponding pair or triple
numbers inside the invading population. It is always
possible to express quantities such as Q (ij j) in terms of
pairs ‰ij Š, singletons ‰i Š, etc. For instance, Q (ij j) ˆ ‰ij Š/‰ j Š.

The ¢rst step in the derivation of Q (I jSI) is to note that
Q (I jSI)41 because the susceptible has at least one
infected partner. We must also determine how many other
infected partners the susceptible individual has on average.
The expected number of partners of an individual with at
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least one partner Q 5 1 can be calculated completely aside
from any consideration of disease status. We get this from
equation (A3). Thus the number of extra (infected or
uninfected) partners given that the individual has at least
one partner is Q 5 1 ¡ 1. Also, the fraction of extra part-
ners of the susceptible in an SI pair who are infected is
(Q (I jSI) ¡ 1)=(Q (I jSI) ¡ 1 ‡ Q (SjSI)). Combining this
with the expression for the total number of extra partner-
ships Q 5 1 ¡ 1 we obtain

Q (I jSI)º1‡ (Q 5 1¡1)£
Q (I jSI) ¡ 1

Q (I jSI)¡1‡ Q (SjSI)
. (1)

Also, we rearrange Q (SjSI) to obtain Q (SjSI) ˆ ‰SSI Š/
‰SI Š ˆ (‰SSI Š/‰SS Šc)£ (‰SS Šc/‰SI Š) ˆ Q (I jSS)c‰SS Šc/‰SI Š.
For Q (I jSS)c we take

Q (I jSS)c º Q (I jSI) ¡ 1. (2)

This follows from our independence assumption, and we
note that this expression is valid only for Q (I jSS)c and
not for Q (I jSS). The upshot of this will be that our
moment closure makes some progress in extending the
usefulness of pair approximations to invasion analysis and
not just equilibrium analysis.

We need a third equation. Some thought will convince
the reader that Q (I jSS)c ˆ ‰ISS Š=‰SS Šc. Also Q (I jSS)
º  Q (I jS) where  is a factor which comes from the fact
that the susceptible already has at least one partner.  is
the ratio of how many partners a sexually active person
has, minus one for the susceptible (i.e. Q 5 1 ¡ 1), to the
number of partners anyone has (i.e. Q ). In other words 
adjusts for what we know about the network structure in
this case. We combine these facts in the following deriva-
tion:

Q(I jSS)c ˆ
‰ISS Š
‰SS Šc

ˆ
Q(I jSS)‰SS Š

‰SS Šc
º Q (I jS)

Q 5 1¡1
Q

‰SS Š
‰SS Šc

.

(3)

Now that we have three equations in three unknowns, we
can solve equations (1), (2) and (3) for ‰SS Šc, Q (I jSI) and
Q (I jSS)c:

‰SS Šc ˆ
‰SI Š

Q ‰S Š ¡ ‰SS Š
‰SS Š , (4)

Q (I jSI) ˆ
‰SS Š ‡ Q 51(Q ‰S Š ¡ ‰SS Š)

Q ‰S Š , (5)

Q (I jSS)c ˆ
(Q 5 1 ¡ 1)(Q ‰S Š ¡ ‰SS Š)

Q ‰S Š . (6)

We can check partially if these approximations have the
behaviour they should. First, consider ‰SS Šc. De¢ne
Q S (respectively Q I) as the average number of partners
per susceptible (resp. infected). We expect that Q S5 Q
and Q I 4Q , because having more partners means one is
more likely to be infected. It easily follows from this and
the equality ‰SI Š ‡ ‰SS Š ˆ Q S‰S Š that ‰SS Šc4 ‰SS Š as we
would demand. Second, we note that Q (I jSS)c is positive
de¢nite. From the foregoing we have Q ‰S Š ¡ ‰SS Š4 0, and
since Q 5 1 ¡ 14 0 (when ³4 0) it also follows that
Q (I jSS)c4 0. Thus Q (I jSI) ˆ 1 ‡ Q (I jSS)c41 implies

Q (I jSI)4 1. Third, it can also be checked that in the case
of serial monogamy, Q (I jSI) ˆ 1 and Q (I jSS)c ˆ 0.

Substituting approximations (4)̂ (6) into the master
equations (A5)̂ (A10) gives a closed set of ¢rst-order
di¡erential equations for the pair numbers ‰SS Š, ‰SI Š and
‰II Š, and for ‰I Š, ‰XI Š and ‰XSŠ. The accuracy of this
moment closure is considered in Appendix B, where a
comparison between the stochastic and deterministic
models is made.

3. CALCULATING R0

R0 for STD models has only been derived for cases
where the processes of partnership formation and separa-
tion are not taken into account (Diekmann et al. 1990) or
systems where each individual can have at most one
partner at a time (Kretzschmar et al. 1994; Diekmann
et al. 1991).

We discuss a new method which exploits the structure
of invasions in systems that are spatial and/or on a
network. Thus, not only does this approach allow one to
attack a seemingly much more di¤cult problem, but also,
we would claim, it is much closer to reality than mean-
¢eld theory in the way it models the invasion.

This new method relies on certain characteristics of the
time evolution of the spatial structure. Let us consider the
situation where an infection is introduced into a purely
susceptible population by randomly placing a few infec-
teds among the susceptibles. Moreover, we will assume
that the partnership dynamics in the purely susceptible
population have had time to come to equilibrium. We
then consider the invasion process. A stochastic invasion
of such a system consists of three phases:

(i) Inoculation phase. The ¢rst stage is largely stochastic
and relatively quick: a number of infective indivi-
duals (with ‰I Š ½ N ) are randomly placed in the
population and start infecting their partners.

(ii) Establishment phase. If the disease does not die out,
then there is a second stage which is characterized
by the fact that at its beginning we still have
‰I Š ½ N , but now the individual infectives have
grown into small local populations with a well-
de¢ned local correlation structure that can be calcu-
lated by the techniques described below.

(iii) Development phase. Here, the disease may either die
out or grow until it reaches some equilibrium. If the
disease grows, the characteristic local correlation
structure undergoes changes as the various patches of
infection start to come into contact with one
another.

Although ¢rst identi¢ed in lattice models, this pattern is
also observed in the dynamic networks investigated in
this paper, even though the network structure is totally
di¡erent in the two cases.

At the start of the establishment phase we expect that
all the quantities of the form Q (ijI) and Q (ij jI) (where i
and j denote either infected (I) or susceptible (S)) will
have reached quasi-equilibrium values. For example,
Q (SjI) will go from its initial value of Q to its quasi-
equilibrium value. All this can be seen very nicely in
¢gure 1, which shows the time evolution of Q (SjI). For
example, one sees the rapid decline of Q (SjI) from its

Moment closure STD model C. Bauch and D. A. Rand 2021

Proc. R. Soc. Lond. B (2000)



initial value of Q (SjI) ˆ Q and the approximately zero
slope of Q (SjI) after the disease has established its local
structure. Also, we see the gradual change in Q (SjI) as
the number of infected individuals increases. Compare
this with ¢gure 2 which shows the time-series for log‰I Š
for these parameters. Note that immediately after Q (SjI)
has reached quasi-equilibrium, the growth of ‰I Š is expo-
nential and Q (SjI) remains roughly constant during the
exponential growth phase, as expected.

We will exploit these growth characteristics to obtain
a formula for R0. Using the equation d‰I Š/dt ˆ (¡ ¸
‡ lQ (SjI))‰I Š, we see that at the start of the establish-
ment phase an individual, while infective, infects others
at a rate lQ (SjI)e, where Q (SjI)e is the value of Q (SjI)
in this phase (i.e. the quasi-equilibrium value). The
expected length of time an individual remains infective is
1=¸. Thus we deduce that

R0 ˆ
lQ (SjI)e

¸
.

Consequently, we must estimate the quasi-equilibrium
value Q (SjI)e. We use the original equations of motion
(A5)̂ (A10) to derive equations for dQ (SjI)/dt,
dQ (I jI)=dt and dO=dt where O ˆ ‰XI Š=‰I Š. These give
information about the local structure evolution. These
equations still include the terms Q (I jSI) and Q (SjSI),
but we use the pair approximations (4)̂ (6) derived in the
previous section to approximate them. We can then
employ the quasi-equilibrium approximation dQ(SjI)/dt
ˆ dQ(I jI)/dt ˆ dO/dt ˆ 0 and solve for Q (SjI)e, Q (I jI)e,
and Oe.

By taking the derivative of Q (SjI) ˆ ‰SI Š/‰I Š we obtain
dQ (SjI)/dt ˆ (‰SI Š¡1d‰SI Š/dt ¡ ‰I Š¡1d‰I Š/dt)Q (SjI). Sub-
stituting the expressions for d‰I Š/dt and d‰SI Š/dt from
equations (A10) and (A5) produces

1
‰I Š

d
dt

Q (SjI) ˆ »
N

‰XSŠ‰XI Š ‡ »³
N

((N ¡ ‰I Š)‰I Š ¡ ‰XS Š‰XI Š)

¡ ¼‰SI Š ¡ ¸‰SI Š ‡ ¸‰II Š ‡ l‰SS ŠcQ (I jSS)c

¡ l‰SI ŠQ (I jSI) ¡ (lQ (SjI) ¡ ¸)‰SI Š.

Next we substitute the expressions for Q (I jSI),
Q (I jSS)c and ‰SS Šc, and also make the substitutions
‰XSŠ ˆ X ¡ ‰XI Š, XI ˆ O‰I Š, ‰II Š ˆ Q (I jI)‰I Š and ‰SI Š
ˆ Q (SjI)‰I Š to produce equations in terms of Q (SjI),
Q (I jI), O and ‰I Š. Finally, we make the approximation
that ‰I Š=N º 0 (because the number of infecteds is initi-
ally small) to produce

d
dt

Q (SjI) ˆ (»OQXN ‡ »³QN 2 ¡ »³Q OXN

¡ ¼Q (SjI)N 2Q )/((N2Q Q (SjI))

‡ (¸Q (I jI)N2Q ‡ 4lQ (SjI)NQ 5 1P

¡ 4lQ (SjI)NP)/N 2Q Q (SjI))

‡ ( ¡ lQ (SjI)N 2Q Q 5 1

¡ lQ (SjI)2N 2Q )/(N2Q Q (SjI)).

We can derive similar equations for dQ (I jI)=dt and
dO=dt. Thus we have three nonlinear di¡erential
equations in three unknowns. At the point where the
disease becomes established we can set dQ (SjI)=dt
ˆ dQ (I jI)/dt ˆ dO=dt ˆ 0 which is a good approxima-
tion for most parameter choices. Then we solve for the
unknowns, giving us the values Q (SjI)e, Q (I jI)e and Oe

of Q (SjI), Q (I jI) and O at establishment.
The solution for Q (SjI)e is a large third-order poly-

nomial which is di¤cult to simplify except in special
cases. Because of its length we do not write the full solu-
tion here. The complication of the solution re£ects the
complexity of the model rather than any unnecessary
complication introduced by our method. However, we
can study it numerically (see ½ 4).

In the case where partnership dynamics are much
slower than infection dynamics (the orders of » and ¼
much less than the orders of l and ¸), R0 becomes

R0 ˆ ¡1 ¡ w ‡ ¹ ‡ (¹ ¡ w)2 ‡ 2w, (7)

where w ˆ l=¸, ¹ ˆ 1=2 ‡ lP=(N¸(1 ¡ º0)), and º0 is as
in equation (A2).
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Taking the derivative of R0 with respect to º0 shows
that R0 is monotone increasing in º0. Also, Appendix A,
½ (b) shows that º0 is itself an increasing function of ³ on
the interval 05 ³5 1 (if P is held constant by adjusting ¼).
Thus, R0 is also an increasing function of ³. As the
proportion of individuals in the population with multiple
partners increases, R0 also grows and the disease is able
to spread more quickly through the population. Concur-
rency always increases R0 for slow partnership dynamics.

Because R0 is monotone increasing in ³, we know that
R0 is bounded above and below on the interval 05³51
according to the bounds for º0 (see Appendix A, ½ (b)). It
is di¤cult to infer the shape of the R0 curve on the
05³5 1 interval because of the complicated dependence
of º0 on ³. However, numerical analysis suggests that the
dependence of R0 on the index of concurrency µ3 is
roughly exponential.

4. NUMERICAL RESULTS

The analysis of ½½ 2 and 3 allows us to consider the
dependence of R0 and endemicity on concurrency. The
di¡erential equations were analysed numerically using

CONTENT 1.5. As mentioned in }1, one wants to sepa-
rate the e¡ects of increasing concurrency per se from an
increase accompanied by a larger equilibrium number of
partnerships P. Thus in this section, P is always held at
some constant value P0 as concurrency is increased.

First, there is the question of how fast R0 grows with
increasing concurrency as measured by µ3. Figure 3 shows
a monotonic increase in R0 with concurrency, although it
is not exponential; increasing P gradually reverses the
curvature. Figure 4 shows the special case of very slow
partnership dynamics (as calculated in equation (7)), and
indicates roughly exponential growth of R0 with concur-
rency; it remains exponential for other values of P.

Figure 5, a bifurcation diagram, shows the most typical
behaviour for realistic parameters of the number of infec-
teds versus µ3. As concurrency is increased, a branching
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point is reached and the trivial and non-trivial solution
branches exchange stability. Beyond this threshold the
endemicity increases rapidly with increasing concurrency.
Figure 6, which shows the evolution of the non-trivial
branch as ¸ is varied, indicates that as ¸ decreases the
branching point moves closer to the origin and there is a
sharper increase in endemicity after the branching point.
The S-shape of the non-trivial solution branch is also
notable (also apparent in ¢gure 5).

In some cases the endemicity can decrease with
increasing concurrency. Figure 7 shows this case. Here,
the endemicity is high on account of a very low
recovery rate. This decrease might be caused by a
tendency of the infection to cluster in certain parts of
the network. If infected individuals cluster more as
concurrency is increased (perhaps on account of the
increased variation in the node degree distribution),
then the number of SI links is reduced, and hence
overall disease transmission is also reduced. This e¡ect,
in the cases of high endemicity, might be strong enough
to cause a decrease in endemicity for certain values of
concurrency. However, these results would only have
signi¢cance for diseases with a characteristically high
endemicity, and where there is recovery to a susceptible
state and subsequent reinfection.

Figure 8 shows three examples (for three values of ¸ )
where the partnership dynamics are very fast. In this case
one would not expect network structure to be important
to infection dynamics. In all three cases, the endemicity is
relatively constant as concurrency is increased, although
the endemicity increases or decreases somewhat
according to the recovery rate. Thus, even when the part-
nership dynamics are occurring at such a fast rate
(»=¸ º 2000), network structure has some impact. It is
also interesting that the endemicity can either decrease or
increase with increasing concurrency.

5. DISCUSSION

We have shown that it is possible to use the ideas of
moment closure to derive di¡erential equations describing
interesting STDs spreading on a dynamic partnership

network. These equations allow one to analyse the e¡ects
of important parameters without resorting to time-
consuming simulations. In particular, they allow one to
explore much more easily issues of stability, robustness
and ubiquity. In certain limiting regimes one obtains
simple expressions for quantities such as R0.

However, there does not seem to be a single optimal
moment closure scheme for such systems. Which scheme
one chooses depends upon one’s particular aim. Here we
have chosen a scheme which combines simplicity, intuitive
accessibility and accuracy for both equilibrium solutions
and growth rates.

Most important is our calculation of R0 for spatial and
network systems, on grounds of its novelty and the
insights into local structure evolution on which it is based
(however, see Rand 1999). The concept is a very natural
one for such systems. We believe that this approach will
be of considerable use in a wide range of invasion
problems in spatial and network systems.

Finally, the results show that concurrency in sexual
partnership networks greatly increases the impact of a
sexually transmitted disease, both in terms of ¢nal size
and the basic reproduction ratio R0.

One possible elaboration of this model would be to
tailor it more closely to particular STDs. This could be
done just by looking at particular areas of the parameter
space or by introducing elements such as disease-induced
mortality, age structure or core groups. Although the
sexual network in this model is not sociologically realistic,
we believe that the results are robust for the other types
of concurrency found in real sexual networks. One way to
check this would be to introduce other types of concur-
rency models and compare the e¡ect they have on the
disease epidemiology.
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Figure 7. Bifurcation diagram showing the case of decreasing
endemicity. » ˆ 0:01, l ˆ 0:01, ¸ ˆ 0:0006, P0 ˆ 442:4.
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Figure 8. Bifurcation diagram for ‰I Š for the case where
partnership dynamics are fast relative to infection dynamics
(» ˆ 0:2, P0 ˆ 365:7, l ˆ 0:0005, ¸ ˆ 0:0001, 0:00015,
0:0002). The topmost branch corresponds to ¸ ˆ 0:0001 and
the bottom branch corresponds to ¸ ˆ 0:0002.



APPENDIX A. MODEL DESCRIPTION AND DERIVATION

(a) Variables and parameters
Tables A1 and A2 show, respectively, the dynamical

variables and static parameters. The following constraints
apply at equilibrium: 2P ˆ 2‰SI Š ‡ ‰II Š ‡ ‰SSŠ and
X ˆ ‰XSŠ ‡ ‰XI Š where X and P are as in equation (A4).

(b) Network structure and the index ofconcurrency kkk3
The index of concurrency µ3 (Kretzschmar & Morris

1996) is the number of concurrent partnerships divided
by the total number of partnerships, i.e. the number of
triples divided by the number of pairs. It can be shown
from the ºk distribution given in equation (A3) that

µ3 ˆ
»³

¼
ˆ ¿³, (A1)

for ³50. The proportion ºk of the population with k part-
ners can be calculated as follows. Let Fm;n be the rate at
which individuals move from a state of having m partners to
a state of having n. In equilibrium, ºkFk, k‡ 1 ˆ ºk‡ 1Fk‡ 1, k.
We also require that k5 0 ºk ˆ 1. Because of the appear-
ance of singularities at ³ ˆ 0 and ³ ˆ 1, it is convenient to
calculate the equilibrium of this process separately for the
three cases ³ ˆ 0 (serial monogamy), ³ ˆ 1 (Poisson-
distributed network), and 05 ³5 1. For º0 we obtain

º0(³) ˆ

( ¡ 1 ¡ 1 ‡ 4¿
p

)=2¿ ³ ˆ 0

¡ ‡ ¡ 2 ‡ 4( ‡ 1)(³¡1 ¡1)
2( ‡ 1)(³¡1 ¡ 1)

05 ³5 1,

e¡¿ ³ ˆ 1

(A2)

where  ˆ exp(¿³). For ºk, k4 1:

ºk(³)ˆ

0 ³ ˆ 0
º0(³)

k!
(¿³)k (º0(³) ‡ ³(1 ¡ º0(³)))

³
05 ³5 1.

¿ke¡¿=k! ³ ˆ 1
(A3)

º0 is the proportion of single individuals in the popula-
tion. In equilibrium, the number of single individuals X
is Nº0, and the number of partnerships P is given by

P(¿, ³, N) ˆ
N
2 k5 1

kºk ˆ
¿(³N2 ‡ (1 ¡ ³)X2)

2N
. (A4)

For given values of N and P there is a unique value of
¿ ˆ ¿(³) such that P(¿(³), ³, N) ˆ P0 for all ³ on the
interval ‰0, 1Š. However, this value can only be determined
numerically. Also, it is clear that if P is held at the
constant value P0 as ³ is increased, then º0 must be
monotone increasing in ³, because the proportion of indi-
viduals with multiple partners goes up as ³ increases.
Because of the monotonicity of º0 in ³, º0(1) and º0(0)
are upper and lower bounds, respectively, on º0(³).

(c) Derivation of equations of motion
We employ the following archetypal equation for

deriving the equations of motion. If f is the time t
expectation value of some function of the state of the
network, then

_f ˆ
e2Events

r(e)¢fe ,

where r(e) is the rate of event e, and ¢fe is the change
induced in f by event e. The main thing to understand
here is that we derive the equations by summing over all
individuals and considering all possible events which can
a¡ect the number of pairs, singles, etc. For instance, in
deriving the equation of motion for ‰SI Š, consider that the
process of recovery of an infected partner can cause the
transition SI ! SS; this destroys one SI pair. Because the
recovery rate is ¸, SI pairs are destroyed in this way at
rate ¸‰SI Š. Another example is pair formation: a suscep-
tible and an infected can form a partnership S ‡ I ! SI
which increases ‰SI Š by one. Some processes involve not
only the two individuals who are part of the SI pair but
also individuals connected to them (as for instance with
concurrent disease transmission). In these cases higher-
order correlations come into play in the form of ISI and
ISS triples. These must be approximated in terms of pairs
and singletons so that we do not have an in¢nite hier-
archy of equations.
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Table A2. Parameters of the modela

parameter de¢nition

»/N rate at which any two singles form a partnership
»³/N rate at which any two singles, at least one of whom

is in a partnership, enter into a partnership
(04³4 1). ³ controls concurrency

¼ partnership separation rate
l disease transmission rate in an infected^subsceptible

partnership
¸ recovery rate
N population size

a ³ ˆ 0 corresponds to monogamy while ³ ˆ 1 corresponds to
independence of partnerships from one another. By scaling time
and the singleton and pair numbers, one can obtain a set of
equations that depend only on the parameters ¿ ˆ »/¼, ! ˆ l/¼,
¯ ˆ ¸/¼, and ³. It follows that quantities such as R0, which are
coordinate independent and do not depend on the unit of time, can
only depend upon such dimensionlessparametercombinations.

Table A1. Dynamical variables involved in moment closurea

symbol de¢nition

[XS] number of single susceptible individuals
[XI] number of single infected individuals
[SI] number of infected^susceptible partnerships
[II] 2£ number of infected^infected partnerships
[SS] 2£ number of susceptible^susceptible partnerships
[I ] total number of infected individuals
[S ] total number of susceptible individuals

a Notice also that the variables [II ] (respectively [SS]) are deter-
mined by counting each I^I (resp. S^S) edge twice, in keeping
with a convention established by earlier research on correlation
equations. Also, [IS] ˆ [SI].



Let ¯x ˆ (state description) denote the state of a node.
For instance ¯x ˆ (P) indicates that node x has a non-zero
degree (the individual is in a partnership). Let
¯xy ˆ (state description) denote the state of two nodes
which may or may not be joined by an edge. A statement
such as ¯xy ˆ (S, X ; I , P) indicates that node x is suscep-
tible and single, and node y is infected and connected to
an edge, but there is no edge between them. However, a
statement such as ¯xy ˆ (SI) indicates that node x is
susceptible, node y is infected, and there is an edge
between them. Let Q x(i) denote the number of partners
(edges) of type i of node x; i can be either susceptible or
infected. Q (ij j) is the population-averaged number of i
partners (edges) of a j. Q (ij jk) is the average number of i
partners (edges) of a j, given that the j has a k partner.
Note that Q (ij j) ˆ ‰ij Š/‰ j Š and Q (ij jk) ˆ ‰ijkŠ/‰ jkŠ when
i 6ˆ k and Q (ij ji) ˆ ‰iji Š/‰ij Š ‡ 1.

We now derive the equation for d‰SI Š=dt. We sum over
all sites in the network where events can occur which
a¡ect ‰SI Š, and consider the rates at which they happen,
to produce the following expression:

d
dt

‰SI Š ˆ
¯xy ˆ (S,X ;I ,X)

»

N
‡

¯xy ˆ (S,P;I ,P)[
(S,P;I,X)[(S,X ;I ,P)

»³

N

¡
¯xy ˆ (SI)

¼ ¡
¯xy ˆ (SI)

¸ ‡
¯xy ˆ(II)

¸

‡
¯xy ˆ (SS)c

lQ x(I) ¡
¯xy ˆ (SI)

lQ x(I).

Next we must simplify the sums which involve Q x(I). We
do this by making the substitutions Q x(I) ˆ Q (I jSI)
‡ ²x(I jSI) and Q x(I) ˆ Q (I jSS)c ‡ ²x(I jSS)c. Q (I jSI)
and Q (I jSS)c are the population-averaged means
discussed in } 2, and the ²x terms represent the £uctuation
from these means at node x. Making this substitution
produces

d
dt

‰SI Š ˆ
¯xy ˆ (S,X ;I ,X )

»

N
‡

¯xy ˆ (S;I)

¡
¯xy ˆ (S,X;I,X)

»³

N

¡
¯xy ˆ (SI)

¼ ¡
¯xy ˆ (SI)

¸ ‡
¯xy ˆ(II)

¸

‡
¯xy ˆ (SS)

lfQ (I jSS)c ‡ ²x(I jSS)cg

¡
¯xy ˆ (SI)

lfQ (I jSI) ‡ ²x(I jSI)g.

On taking the sums, the ²x £uctuations disappear because
of their linearity: ¯xy ˆ ( jk) ²x(ij jk) ˆ 0. Taking means
and parameters out of the sums, and evaluating the sums,
produces

d
dt

‰SI Š ˆ
»

N
‰XSŠ‰XI Š ‡

»³

N
f(N ¡‰I Š)‰I Š ¡‰XSŠ‰XI Šg¡ ¼‰SI Š

¡ ¸‰SI Š ‡ ¸‰II Š ‡ l‰SS ŠcQ(I jSS)c ¡ l‰SI ŠQ(I jSI).

(A5)

The equations for ‰II Š and ‰SS Š are derived similarly:

d
dt

‰II Š ˆ
»

N
‰XI Š2 ‡

»³

N
(‰I Š2 ¡ ‰XI Š2) ¡ ¼‰II Š

¡ 2¸‰II Š ‡ 2l‰SI ŠQ (I jSI), (A6)

d
dt

‰SS Š ˆ
»

N
‰XSŠ2 ‡

»³

N
f(N ¡ ‰I Š)2 ¡ ‰XSŠ2g¡ ¼‰SS Š

‡ 2¸‰SI Š ¡ 2l‰SS ŠcQ (I jSS)c.

(A7)

For ‰XI Š the derivation is very similar, except for one term
which requires us to estimate the number of monogamous
individuals:

d
dt

‰XI Š ˆ ¡
¯xy ˆ (I,X;X)

»

N
¡

¯xy ˆ (I,X;P)

»³

N
¡

¯x ˆXI

¸

‡
¯xy ˆ(SI)

¼ £ 0 if y is not monogamous
1 if y is monogamous

‡
¯xy ˆ(II)

¼ £ 0 if y is not monogamous
1 if y is monogamous

ˆ ¡ »

N
‰XI Š(‰XI Š ‡ ‰XSŠ) ¡ »³

N
‰XI Š(N ¡X)¡ r‰XI Š‡

¼£(number of monogamous infected individuals).

We approximate the number of monogamous infected
individuals as

‰SI Š £ (probability I is monogamous) º ‰SI Š º1

1 ¡ º0
:

Thus,

d
dt

‰XI Š ˆ ¡ »

N
‰XI Š(X)¡ »³

N
‰XI Š(N¡X) ¡ ¸‰XI Š

‡ ¼‰SI Š º1

1 ¡ º0
. (A8)

Similarly, for ‰XSŠ

d
dt

‰XSŠ ˆ ¡ »

N
‰XSŠ(X) ¡ »³

N
‰XSŠ(N ¡ X) ‡ ¸‰XI Š

‡ ¼‰SI Š º1

1 ¡ º0
. (A9)

Finally, for ‰I Š

d
dt

‰I Š ˆ
¯x ˆ (I)

¸ ‡
¯xy ˆ (SI)

l

ˆ ¡¸‰IŠ ‡ l‰SI Š. (A10)

To obtain a closed set of equations, Q (I jSS)c and Q (I jSI)
must be expressed in terms of the given parameters and
variables as discussed in ½ 2.

APPENDIX B. COMPARISON OF STOCHASTIC

AND DETERMINISTIC MODELS

A computer simulation for the underlying stochastic
model was run to compare results with the deterministic
model. Comparison allows us to re¢ne the deterministic
model, understand the stochastic model better, and esti-
mate the error introduced by the moment closure.
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There are 12 cases, the parameters of which are shown
in table B1 (in units of day¡1 ). For each case, » ˆ 0:01,
¼ ˆ 0:005 and N ˆ 1500. Table B2 compares the equili-
brium of the determinstic model and the long-time
average of the stochastic model (the averaging starts after
the system has settled down). There is only one stochastic
run for each set of parameters, but the initial number of
infectives is always large so the cases where the disease
dies out are still relevant.

In general, the agreement increases slightly with
increasing concurrency and increasing endemicity. One
can see that the agreement for cases 1^6 is much poorer
than for cases 7^12. This is because the infection
dynamics time-scale is closer to the partnership dynamics
time-scale in cases 7^12. In our derivation for Q (I jSI)
and Q (I jSS)c we assumed the independence of the state
of one partner from the states of other partners of an
individual. Clearly this assumption works better when the
infection dynamics occur as quickly as, or not much more
quickly than, the time-scale of partnership dynamics. In
our analysis in ½ 4 we take this weakness of the moment
closure into account in our parameter choices.

From this observation we suggest that the pair approxi-
mation is still useful for dynamic networks, but must be
applied more carefully as in comparison with static
network models.
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Table B1. Parameter values (per day) for comparison of stochastic and deterministic predictions

case ³ l ¸ µ3 ¸/¼ case ³ l ¸ µ3 ¸/¼

1 0.08 0.10 0.006 0.16 1.2 7 0.08 0.05 0.003 0.16 0.6
2 0.1 0.10 0.006 0.2 1.2 8 0.1 0.05 0.003 0.2 0.6
3 0.15 0.10 0.006 0.3 1.2 9 0.15 0.05 0.003 0.3 0.6
4 0.1 0.20 0.012 0.2 2.4 10 0.1 0.08 0.003 0.2 0.6
5 0.1 0.08 0.006 0.2 1.2 11 0.1 0.04 0.003 0.2 0.6
6 0.1 0.15 0.006 0.2 1.2 12 0.1 0.025 0.0015 0.2 0.3

Table B2. Comparison of stochastic and deterministic predictions

measure case deterministic stochastic error (%) case deterministic stochastic error (%)

‰I Š 1 284 0 n/a 7 750 674 11
‰SI Š 17.1 0 n/a 45.0 40.4 11

‰I Š 2 469 275 71 8 811 748 8.1
‰SI Š 28.1 16.4 33 58.7 44.7 31

‰I Š 3 718 542 32 9 911 880 3.5
‰SI Š 43.1 32.3 33 54.6 52.8 3.4

‰I Š 4 111 0 n/a 10 920 865 6.4
‰SI Š 6.64 0 n/a 34.5 32.3 6.8

‰I Š 5 342 172 99 11 736 663 11
‰SI Š 25.6 12.7 101 55.2 49.5 12

‰I Š 6 627 378 66 12 1002 1036 3.3
‰SI Š 25.1 14.9 68 60.1 61.8 2.8
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